
Course Review

Module 14

Class Topics
• Module 1 – Introduction
• Module 2 – Architectural Support for OS
• Module 3 – OS Components and Structure
• Module 4 – Processes
• Module 5 – Threads
• Module 6 – Synchronization
• Module 7 – Sync: Performance and Multi-Object
• Module 8 – Storage Systems
• Module 9 – File Systems
• Module 10 – Journaling File Systems
• Module 11 – Log Structured File System
• Module 12 – RAID
• Module 13 – (CPU) Scheduling
• Module 14 – Course Review

What comprises an OS?

Hardware

Kernel Software

User-level software

• Interrupt mechanism
• Timer
• Memory addressing architecture
• IO architecture
• Privilege levels
• Privileged/unprivileged instructions
• Atomic instructions
• Memory consistency model / mechanisms

• Syscall architecture / API
• Process memory model
• Processes / threads
• File Systems / Networking Stack / etc.
• Resource allocators
• Protection model
• IPC mechanisms

• Compilers / linkers / debuggers
• Shells

Avoid Boundary Crossings
• Hardware user/privileged mode
• Monolithic vs. More Modularized OS Structures (e.g.,

micro-kernel)
• File system

– caches: block, directory, i-nodes
– delayed writes
– open/close semantics

• Runtime library app level caches: FILE*
• Shared mapped memory regions
• Threads (vs. processes)
• Cache aware locks
• Per-core run queues

Optimize the Common Case

• vfork
– COW fork

• FFS inode: data block map
• Log structured file system
• MCS locks
• RCU locks

Policies: Beware Starvation

• [Beware deadlock!]
• Any policy that prioritizes is at risk

– Disk scheduling algorithms (SCAN, CSCAN)
– SJF scheduling
– CFS CPU scheduling

Atomicity Simplifies, at a Cost

• Hardware: atomic instructions
• Software: synchronization primitives

– locks: spin and blocking
– condition variables
– lock-free synchronization

• Persistent storage: journaling
– Alternative reliability approach: redundancy (e.g.,

RAID)

Isolation Simplifies, at a Cost

• Processes / address spaces
– pipes
– files
– shared memory
– signals
– threads

• Processes / memory & CPU
• File system protection mechanisms

Simpler is Faster

• This is a variation of “the end-to-end
principle” from networking.
– Put minimal functionality in the base
– If you need more, layer it on top

• Flat address spaces, not segments
• Processes, not objects
• Flat files, not structured files

Namespaces / Scope

• File system namespace / system
• Process namespace / system
• Open file namespace / process
• Disk block namespace / disk
• Syscall namespace / static global

Protection by Naming

• Virtual memory
• syscall number, not target code address
• chroot

– we didn’t talk about it

• containers
– we didn’t talk about them...

	Course Review
	Class Topics
	What comprises an OS?
	Avoid Boundary Crossings
	Optimize the Common Case
	Policies: Beware Starvation
	Atomicity Simplifies, at a Cost
	Isolation Simplifies, at a Cost
	Simpler is Faster
	Namespaces / Scope
	Protection by Naming

